Section 2 - Overhead Distribution Switches

• Overhead Distribution Switches .. 2.0

 • LineBOSS™ 15 kV - 38 kV Sidebreak Type, Unitized GOAB Distribution Switch .. 2.10
 • LineBOSS™ Selection Guide (15 kV - 38 kV) 2.10.1
 • LineBOSS™ Standard Configurations 2.10.1

 • LineBOSS™ 15 kV - 38 kV Distribution Switch Request for Quotations .. 2.11

 • Air-Break Disconnect Switch Attachment Selection Information .. 2.12

 • LineBOSS™ 15 kV - 38 kV, 600 - 1200 A Sidebreak Style Switch Features & Benefits 2.13

 • LineBOSS™ 15 kV - 38 kV, 600 - 1200 A Sidebreak Style Switch Specification Elements 2.14

 • LBS 15 kV - 38 kV, 600 - 1200 A Sidebreak Style Switch Configuration Drawings

 • 9225M LBS, 15 kV - 38 kV SINGLE-PHASE dimensions 2.17
 • 9226M LBS, 15 kV - 38 kV HORIZONTAL dimensions 2.18
 • 9241M LBS, 15 kV - 38 kV HORIZONTAL, Underarm dimensions 2.19
 • 9241-1M LBS, 15-38 kV HORIZONTAL, Underarm Construction Applications .. 2.19.1
 • 9185M LBS, 15 kV - 38 kV RISER dimensions 2.20
 • 9184M LBS, 15 kV - 38 kV, VERTICAL (phase-over-phase) dimensions 2.21
 • 9239M LBS, 15-38 kV, TAP SWITCH (1, 2 & 3-way) dimensions 2.22
 • 9227M LBS, 15-38 kV DELTA (pole top), dimensions 2.23
 • 9298M Hook-stick Operating Mechanism, Crossarm mounted 2.24
 • 9374M LBS, 15 kV - 38 kV, VERTICAL (tiered outboard) dimensions 2.25
 • 9661-28M LBS, 15-38 kV, HORIZONTAL, Substation Mounted dimensions 2.26
 • 9661-32M LBS, 15-35 kV, RISER, Substation Mounted dimensions 2.27
 • 9688-13M LBS, 15-35 kV, RISER, Substation Mounted dimensions 2.28
The LineBOSS™ Sidebreak switch is the most robust, yet elegant sidebreak switch in the market today. Every LineBOSS™ component brings meaningful operator benefits for years to come. Features such as 1/4 inch steel phase base, stainless steel to brass bearings, silver plated copper reverse loop contacts and busbar blades mean efficient and smooth operation over a long life even in hostile environments where dust, humidity corrosives and other industrial or natural contaminants play havoc with most. You’ll be amazed with how much switch you can buy for the money. The LBS is RUS accepted.

Inertia: moving power with passion and innovation!

SPECIFICATIONS

Switch Ratings:

<table>
<thead>
<tr>
<th>Voltage Class:</th>
<th>15.5 kV, 25.8 kV & 38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Current Class:</td>
<td>600, 900, 1200 Amps</td>
</tr>
<tr>
<td>Fault Close:</td>
<td></td>
</tr>
<tr>
<td>15 kA rms-asym: 5 X manual operation</td>
<td></td>
</tr>
<tr>
<td>20 kA rms-asym: 3 X manual operation</td>
<td></td>
</tr>
<tr>
<td>30 kA rms-asym: 2 X manual operation</td>
<td></td>
</tr>
<tr>
<td>Momentary current:</td>
<td></td>
</tr>
<tr>
<td>600 A:</td>
<td>40,000 A rms 10 cycles</td>
</tr>
<tr>
<td>900 A:</td>
<td>51,000 A rms 10 cycles</td>
</tr>
<tr>
<td>1200 A:</td>
<td>70,000 A rms 10 cycles</td>
</tr>
<tr>
<td>Ice breaking:</td>
<td>3/4” (manual operation)</td>
</tr>
<tr>
<td>Mechanical:</td>
<td>5000 cycles (open/close)</td>
</tr>
</tbody>
</table>

LOADBREAK DEVICES:

Arc Horns
ArcWhip Attachments
AmpRupter™ Load Break
AmpVac™ Load Break

“See data sheet “AIR-BREAK DISCONNECT SWITCH ATTACHMENT SELECTION INFORMATION” for loadbreak descriptions and specifications

ACCC Designation DO6
Loadability factor 1.22 at 25 Deg. C.

CROSSARM RATINGS:

<table>
<thead>
<tr>
<th>Crossarm</th>
<th>Material</th>
<th>Dead End Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galvanized Steel</td>
<td>(standard duty)</td>
<td>2000 lbs/phase</td>
</tr>
<tr>
<td>Aluminum</td>
<td>(standard duty)</td>
<td>1500 lbs/phase</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>(standard duty)</td>
<td>1000 lbs/phase</td>
</tr>
</tbody>
</table>

All materials: equal loading, each side of switch is 12,000 lbs. max. Ratings shown are for 25 kV switch

STANDARD FEATURES

- Resilient, higher BIL silicone rubber insulators
- Reverse loop silver plated copper jaw contacts
- Maintenance free stainless steel/brass bearings
- Unitized construction: aluminum, steel or fiberglass
- Factory adjusted, ready to mount
- Meets all applicable NEMA and ANSI standards
- All ferrous components are hot dip galvanized
- Tinned copper terminal pads
- ArmorGalv™ (Thermal Diffusion Galvanized) coated ferrous components available for increased corrosion resistance.

STANDARD CONFIGURATIONS

- Horizontal (upright)
- Horizontal (underarm)
- Horizontal (center mount)
- Riser
- Vertical (tiered outboard)
- Delta (pole top)
- Vertical (phase over phase)
- Tap Switch (1, 2, & 3 way)
- Triangular (Delta)
- Twin Circuit

See opposite side of this page for illustrations and selection guide.
LineBOSS™ Selection Guide (15 kV - 38 kV)

LineBOSS™ Unitized Sidebreak Switch

ARMORGALV® = LT

Voltage Class:
- 15.5 kV (110 kV BIL) = 1
- 25.8 kV (150 kV BIL) = 2
- 38.0 kV (200 kV BIL) = 3

Current Rating:
- 600 A = 6
- 900 A = 9
- 1200 A = 1

Insulator Type:
- Polymeric Silicone (3.0" BC) = S
- Porcelain (3.0" BC) = P

For Increase insulator creepage:
- Add "1" for +1 voltage class
- Add "2" for +2 voltage class

Interrupter Type:
- ArcWhip, Quick-break = Q
- Amprupter, Loadbreak = L
- AmpVac, Vacuum = V
- NO Interrupter = X

Crossarm Type:
- Aluminum = A
- Fiberglass = F
- Galv. Steel = S
- No Xarm = X

Customer specified loading (call factory)

LineBOSS™ Standard Configurations
LineBOSS™
15 kV - 38 kV DISTRIBUTION SWITCH
REQUEST FOR QUOTATION
E-MAIL: sales@inertiaworks.com | FAX: (209) 931-8186

Company Name
Address 1
Address 2
City State Zip code
Contact Name
Telephone Number
Facsimile Number
E-mail address

Make copies of this form to transmit your switch requirements. If you have a standard’s drawing, please send it along with this fax form.

Step 1. Voltage Class ______kV Continuous current rating1: _______A Momentary current_______kA
Step 2. Insulator type:
□ Silicone □ Porcelain □ One BIL class higher?
Step 3. Interrupter type:
□ ArcHorn □ ArcWhip □ AmpRupter™ □ AmpVac™ ‘V’
Step 4. Crossarm type:
□ Galvanized steel □ Fiberglass □ Aluminum

Step 5. Select the configuration (circle one):

HORIZONTAL Upright Underarm
HORIZONTAL Center mount
TAP SWITCH 1-Way 2-Way 3-Way
RISER
DELTA, Triangular/Pole top
VERTICAL Phase-over-phase
VERTICAL Tiered outboard

Step 6. Select Spacing:
□ Standard □ Custom (Fill in Spacing Dimensions below using configurations in Step 5.)
A” ________ “B” ________ “C” ________ “D” ________ “E” ________

Step 7. Select the control mechanism:
□ Hookstick □ Reciprocating () □ Torsional (◊) Clockwise or Counterclockwise to open; viewed looking down on the handle.

Step 8. Select control mechanism quadrant (see fig. 1): ________

1 LineBOSS™ switches are ANSI rated switches. The LineBOSS™ Lx6xxxx is rated 600 Amps continuous current per the ANSI C37.30 temperature rise test requirements, and for 900 Amp continuous current per the IEEE 1247 temperature rise test requirements. The LineBOSS™ Lx9xxxx is rated 900 Amps continuous current per the ANSI C37.30 temperature rise test requirements. The LineBOSS™ Lx1xxxx is rated 1200 Amps continuous current per the ANSI C37.30 temperature rise test requirements. Momentary current ratings (10 cycle) are: 600 A (ANSI C37.30) = 40 kA 900 A (ANSI C37.30) = 51 kA 1200 A (ANSI C37.30) = 70 kA
Step 9. Select control rod:
- Galvanized pipe: ¾” 1” 1½” other ________
- Fiberglass: 1” round 1½” square other ________

Step 10. Select control rod length:
- 30 ft. 40 ft. other ________

Step 11. Select additional accessories and modifications (check off and write in)
- Provision for Neutral (4-wire)
- Pole mounting bands; Specify ________________________________
- Substation mounting: Specify base mounting dimensions or furnish drawing.
- Surge Arrestor brackets: Set of 3 arrestor brackets Set of 6 arrestor brackets
- Extension links (package qty. of 6): 6” Length EA 14” Length EA
- Terminals: Terminal paddle for fired wedge connectors ______________________ (specify size)
 - Terminals, 2-hole copper NEMA pad #2-500 kcmil (600 & 900 A switch) Specify: ________
 - Terminals, 4-hole copper NEMA pad 500-750 kcmil (1200 A switch) Specify: ________
- Terminals, other; ______________________ (specify size)
- Sensor Brackets: 1 set of 3 brackets
- Current/Voltage Sensors: 3 each of . . . Current Voltage Current/Voltage
- Fiberglass section in pipe control rod: 1” round fiberglass 1½” square fiberglass
- Station post insulator in control rod section
- Intermediate control rod guides: Oval-eye Nuts Swing-arm type
- Bonded handle: Grounding connector on crossarm ________ AWG range
- Key Interlock - single key for circuit switching safety (“locked open”)
- Crossarm Braces: Galvanized Steel Fiberglass
- Double Lifting Point. (Switches come standard with a single lifting point).
- ArmorGalv® AG3000 (Thermal Diffusion Galvanizing) ferrous component coating 4.

2 Torsional control rods available in 1-1/2” Galvanized Pipe Only.
3 Torsional: N.T.E 50’ max.
4 Ferrous components come Hot Dipped Galvanized (HDG) standard. Armorgalv AG3000 Thermal Diffusion Galvanizing (TDG) offers increased corrosion resistance.
AmpRupter™

The Inertia AmpRupter utilizes expulsion tube interrupter technology to break current loads up to 900 amps at 27 kV. It is used for load-break, loop break, line charging and cable charging switching operations. The AmpRupter was tested to IEEE 1247-1998 Standard for Interrupting Switches for Alternating Current Rated Above 1000 Volts. The mechanical life of the AmpRupter is 2,500 operations. The electrical life of the AmpRupter is dependent on the amount of load interrupted.

AmpRupter load interruption occurs as the switch blade leaves the contact clip; making contact with the catch arm. At this point, current is shunted through the actuator arm, through the contacts to the load side. As the blade continues towards its open position, the internal spring powered mechanism trips; breaking the internal contacts.

This action evolves a pressurized non-conductive gas that extinguishes the arc. This process occurs within one half cycle (first zero crossing), and will not “chop” the current upon circuit interruption. The speed of the AmpRupter mechanism is not dependent on the switch operating speed, insuring that the load breaking capabilities are consistent regardless of switch opening speed. The AmpRupter automatically resets for the next operation. The AmpRupter is not in the current path during the switch closing operation, and has no fault closing capabilities. The AmpRupter is in the current path during the switch opening operation only.

AmpVac™ ‘V’

The AmpVac is an enclosed vacuum bottle interrupter where no gases are vented to the atmosphere. The AmpVac interrupter has much higher interruption capabilities than other load break devices. Single contact AmpVac interrupters break loads up to 1500 amps at 38 kV. Single vacuum bottle interrupters may be used at increased voltages for parallel or loop switching applications as long as the peak recovery voltage does not exceed 38 kV. The mechanical and electrical life of the AmpVac is 5000 operations at full load. The AmpVac was tested to IEEE 1247-1998.

V4 & V7

The V4 and V7 vacuum interrupters are single-gap load-breaking devices that utilize vacuum bottle technology, where no gases are vented to the atmosphere. The new single vacuum bottle design can break loads up to 2000 Amps at 48.0 kV, and 72.5 kV; where it now replaces the original V2 and V3 multi-vacuum bottle designs. Vacuum bottle interrupters are not in the current path during the switch closing operation, and have no fault closing capabilities. The mechanical and electrical life of the V4 and V7 vacuum interrupter is 5000 operations at full load.
ArcWhip

The ArcWhip has a small interrupting rating of between 10 and 20 amps. The ArcWhip can clear arcs from residual energy stored in capacitor banks, transformers or conductors. ArcWhips are only in the current path during switch opening operations, and have an average life of 150 open operations.

ArcHorn

(Not an interrupter)

The ArcHorn is not an interrupter and has no ratings. It is used as an arc deflecting mechanism to save the life of switch blades and contact clips. The ArcHorn, also known as “sacrificial arcing horn”, is the first point of contact during switch closing operations. The initial making current during a closing operation creates small arcs; pitting the arc horns. This “sacrificial” mechanism helps prevent degradation of the main contacts. The ArcHorn is used to redirect the arc resulting from residual or stored charge left after a down-line circuit is opened. ArcHorns will not prevent damage from the inadvertent opening of a loaded switch.

Vacuum Bottle Interrupter Applications:

<table>
<thead>
<tr>
<th>Type of Switching:</th>
<th>AmpVac™ 'V'</th>
<th>V4</th>
<th>V7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Rating:</td>
<td>15.5 kV, 25 kV, 38 kV*</td>
<td>48.0 kV</td>
<td>72.5 kV</td>
</tr>
<tr>
<td>Loadbreak, 70% PF</td>
<td>2000 A</td>
<td>2000 A</td>
<td>2000 A</td>
</tr>
<tr>
<td>Parallel Break < 30% PF</td>
<td>1500 A</td>
<td>2000 A</td>
<td>2000 A</td>
</tr>
<tr>
<td>Cable Charging</td>
<td>40 A</td>
<td>10 A</td>
<td>10 A</td>
</tr>
<tr>
<td>Magnetizing</td>
<td>21 A</td>
<td>70 A</td>
<td>70 A</td>
</tr>
<tr>
<td>Capacitor Bank, (grnd. neut.)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Recovery voltage between source and load must be less than 38 kV, immediately.

Interrupter Attachment Device Application:

<table>
<thead>
<tr>
<th>Type of Switching:</th>
<th>ArcHorn</th>
<th>ArcWhip</th>
<th>AmpRupter™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadbreak, 70% PF</td>
<td>N/A</td>
<td>N/A</td>
<td>15 kV : 900 A</td>
</tr>
<tr>
<td>Parallel Break < 30% PF</td>
<td>N/A</td>
<td>N/A</td>
<td>23 kV : 900 A</td>
</tr>
<tr>
<td>Cable Charging</td>
<td>N/A</td>
<td>≤ 72.5 kV : 15 A</td>
<td>23 kV : 6.2 A</td>
</tr>
<tr>
<td>Line Charging</td>
<td>N/A</td>
<td>≤ 72.5 kV : 3500kVA</td>
<td>27 kV : 2.7 A</td>
</tr>
<tr>
<td>Magnetizing</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Inertia’s switches are comprised of quality components to ensure longer service-life.

FEATURE

Stainless steel/brass bearings in the bellcrank

BENEFITS

Bearing in the bellcrank reduce the force required to operate the switch and eliminate corrosion due to plated metal-to-metal wear.

Many manufacturers use rotating insulator spindles and bearings that are supported solely on the 3/16” thick phase base surface that can flex during normal operation, causing blade-to-clip misalignment. The spindle and its bearing should be supported at both the phase base surface and the end of the spindle opposite the blade.

Rotating insulator spindles that are made of zinc chromate plated steel which can rust. Others use cast aluminum which is inexpensive, but has poor wear characteristics and does not have the strength of steel. Switches can come out of contact adjustment if a spindle bearing fails. Inertia rotating insulators pivot on double sealed stainless steel ball bearings at both the top and bottom of the phase providing smooth maintenance-free operation of the switch throughout its life.

Benefit: Total operating cost of the switch is reduced as less site visits are required for maintenance.

Sealed stainless steel ball bearings on rotating stacks

ANSI TR2xx series, 3” bolt circle station post insulators are provided in silicone or porcelain.

<table>
<thead>
<tr>
<th>Insulator Type (25 kV example)</th>
<th>Load Ratings:</th>
<th>B.I.L. Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cantilever</td>
<td>Torsion</td>
</tr>
<tr>
<td>3” BC silicone</td>
<td>1,200 lbs.</td>
<td>6,000 lbs.</td>
</tr>
<tr>
<td>3” BC porcelain</td>
<td>2,000 lbs.</td>
<td>7,000 lbs.</td>
</tr>
<tr>
<td>2½” BC porcelain</td>
<td>1,000 lbs.</td>
<td>3,000 lbs.</td>
</tr>
<tr>
<td>2½” BC epoxy</td>
<td>1,200 lbs.</td>
<td>5,000 lbs.</td>
</tr>
</tbody>
</table>

These insulators have superior mechanical characteristics over 2¼” BC insulators. Silicone insulators have additional B.I.L., leakage and weatherability ratings over either porcelain or epoxy insulators.

Busbar grade copper contact components.

Busbar grade copper contact components are structurally superior with greater conductivity than cast contact material. Cast aluminum and copper bronze contact castings are 34-36% conductive and often contain unseen surface irregularities and voids that create ‘hot spots’. Busbar grade C110 copper is 99% conductive and is many times smoother to provide better terminal connection surfaces and is not subject to unseen porosity. With this contact system, the LineBOSS™ has achieved the highest momentary and fault close ratings in the industry. Momentary: to 70 kA for 10 cycles and 44 kA for 3 seconds. Fault close: 30 kA (2X).

Often, switch manufacturers use cast clamps to connect the interphase rod to the rotating stacks. This clamping method has one fixed side and only one open side to pinch the interphase rod. The interphase rod clamp is the device that assures uniform operation of the three switch phases. Any slippage results in an improperly adjusted switch, with not all phases fully closed into the contacts. The LineBOSS™ uses formed two-piece clamps to compress the interphase rod surface with significantly more distributed pressure. This helps to maintain uniform operation of all three phases throughout the life of the switch.

FEATURE

Formed interphase rod clamps with two-bolt clamping.
Part Description:

15 kV (15.5 kV max.) to 35 kV (38 kV max.) GANG OPERATED LOADBREAK OVERHEAD SWITCHES
Horizontal Upright | Horizontal Center Mount | Horizontal Underarm | Avian/Wildlife Protection | Riser | Triangle (Pole Top)
Vertical (Phase-over-phase) | Vertical (Tiered Outboard) | Tap (1,2, 3 way) | Twin Tap Riser

Design Specifications:

1. Nominal voltage: (15 kV, 25 kV or 38 kV)
2. Insulators: Silicone rubber station post; BIL rating
 (15 kV: 130 kV, 25 kV: 175 kV, 38 kV: 240 kV)
3. Switch bearings: Stainless steel to brass on all rotating
 insulators and switch operating shafts.
4. Loadbreak shall be capable of: 900 A load breaking, 25
 A cable charging, 900 A parallel switching.
5. Contacts: Copper busbar blade and reverse loop con-
 tacts are to be silver-plated, N.E.M.A. terminal pads
 shall be tin-plated copper busbar with a surface finish
 of 32 minimum.
6. The switch shall provide means to attach line current/
 voltage sensors.
7. All ferrous components shall be hot dip galvanized.
8. Loadbreak shall be self-resetting; where the trip
 ping speed of the loadbreak shall be independent of
 switch operating speed. No component of the load-
 break shall make contact with the closing switch blade
 prior to main switch contact engagement. All actuating
 mechanism components of the loadbreak device must
 be stainless steel or non-corrosive parts.
9. Switch base (crossarm) is to be: (hot dip galvanized
 steel, fiberglass or aluminum) see LineBOSS™ switch
 selection guide for dead-end loading specifications.
 Specify pole clearance spacing i.e. 24", GO95.
10. Operating rod: specify type and length of control rod,
 and if an insulated section is required (see LineBOSS™
 selection guide).
11. The gang operated sidebreak style switch shall be
 capable of seamless automation with a torsional or
 reciprocating motor operator as dictated by the switch
 type. It shall be available with the motorized switch
 operator replacing the manual handle.
12. Testing performed in accordance with standards: IEEE
 265-1,1983 as applicable for 12 kV, 21 kV or 34.5 kV
 (system voltage).

Switch Ratings:

<table>
<thead>
<tr>
<th>Voltage Class</th>
<th>Current Class</th>
<th>Fault Close</th>
<th>Momentary Current</th>
<th>Ice Breaking</th>
<th>Mechanical</th>
<th>ACCC Designation</th>
<th>Loadability Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5 kV, 25.8 kV and 38.0 kV</td>
<td>600, 900 and 1200 A continuous</td>
<td>5 X Manual Operation</td>
<td>40,000 A-rms 10 cycles</td>
<td>¾” (manual operation)</td>
<td>5000 Open/Close cycles</td>
<td>DO6</td>
<td>1.22 at 25 Deg. C.</td>
</tr>
</tbody>
</table>

Switch Ratings:

<table>
<thead>
<tr>
<th>AmpVac Loadbreak</th>
<th>12 kV through 38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Current</td>
<td>1500 A-rms</td>
</tr>
<tr>
<td>Parallel Current</td>
<td>1500 A-rms</td>
</tr>
<tr>
<td>Cable Charging</td>
<td>600 A-rms</td>
</tr>
<tr>
<td>Magnetizing Current</td>
<td>600 A-rms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AmpRupter Loadbreak</th>
<th>900 A-rms @ 23 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Current</td>
<td>900 A-rms</td>
</tr>
<tr>
<td>Parallel Current</td>
<td>900 A-rms</td>
</tr>
<tr>
<td>Cable Charging</td>
<td>26 A-rms</td>
</tr>
<tr>
<td>Magnetizing Current</td>
<td>2.7 A-rms</td>
</tr>
</tbody>
</table>

ArcWhip Ratings:

<table>
<thead>
<tr>
<th>Voltage (nominal)</th>
<th>≤ 72.5 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Charging</td>
<td>15 A-rms</td>
</tr>
<tr>
<td>Line Charging</td>
<td>3500 kVA</td>
</tr>
</tbody>
</table>

Quick Break Whip Ratings:

<table>
<thead>
<tr>
<th>Voltage (nominal)</th>
<th>15 kV – 35 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Charging</td>
<td>15 A-rms</td>
</tr>
<tr>
<td>Line Charging</td>
<td>3500 kVA</td>
</tr>
</tbody>
</table>
15 kV - 38 kV Single Phase Dimensions

This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

Nominal Voltage Rating

<table>
<thead>
<tr>
<th>DIM:</th>
<th>15 kV</th>
<th>25 kV</th>
<th>38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19.375"</td>
<td>23.375"</td>
<td>27.375"</td>
</tr>
<tr>
<td>B</td>
<td>13.500"</td>
<td>17.500"</td>
<td>21.500"</td>
</tr>
<tr>
<td>C</td>
<td>13.188"</td>
<td>16.188"</td>
<td>22.188"</td>
</tr>
<tr>
<td>D</td>
<td>14.250"</td>
<td>18.250"</td>
<td>22.250"</td>
</tr>
<tr>
<td>E</td>
<td>6.563"</td>
<td>9.563"</td>
<td>16.375"</td>
</tr>
</tbody>
</table>

Materials:
- N/A

Finish:
- N/A

Scale:
- NTS

Drawn By:
- N/A

Date:
- 12/19/16

Description:
LBS, 15 kV - 38 kV, SINGLE PHASE, Dimensions
15 kV - 38 kV Horizontal Dimensions

Nominal Voltage Rating

<table>
<thead>
<tr>
<th>DIM:</th>
<th>15 kV</th>
<th>25 kV</th>
<th>38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>76"</td>
<td>87"</td>
<td>120"</td>
</tr>
<tr>
<td>B</td>
<td>26"</td>
<td>30"</td>
<td>48"</td>
</tr>
<tr>
<td>C</td>
<td>18"</td>
<td>18"</td>
<td>21"</td>
</tr>
<tr>
<td>D</td>
<td>26"</td>
<td>33"</td>
<td>45"</td>
</tr>
<tr>
<td>E</td>
<td>13"</td>
<td>16"</td>
<td>22"</td>
</tr>
<tr>
<td>F</td>
<td>6.875"</td>
<td>13.875"</td>
<td>19.250"</td>
</tr>
</tbody>
</table>

This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.
15 kV - 38 kV Horizontal Underarm Dimensions

This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

Nominal Voltage Rating

<table>
<thead>
<tr>
<th>DIM</th>
<th>15 kV</th>
<th>25 kV</th>
<th>38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>102" [2591 mm]</td>
<td>120" [3048 mm]</td>
<td>129" [3277 mm]</td>
</tr>
<tr>
<td>B</td>
<td>26" [660 mm]</td>
<td>33" [838 mm]</td>
<td>48" [1219 mm]</td>
</tr>
<tr>
<td>C</td>
<td>24" [610 mm]</td>
<td>24" [610 mm]</td>
<td>24" [610 mm]</td>
</tr>
<tr>
<td>D</td>
<td>46" [1168 mm]</td>
<td>57" [1448 mm]</td>
<td>51" [1295 mm]</td>
</tr>
<tr>
<td>E</td>
<td>10" [178 mm]</td>
<td>14" [356 mm]</td>
<td>23" [737 mm]</td>
</tr>
</tbody>
</table>

Materials:
- N/A

Description:
LBS, 15 kV - 38 kV HORIZONTAL, underarm Dimensions

Drawing No.: 9241M

Revision: 00
15 kV - 38 kV Horizontal Underarm Switch
Construction Applications

This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

Materials: N/A
Finish: N/A
Scale: NTS
Drawn By: N/A
Date: 12/19/16

Drawing No.: 9241-1M
Revision: 00
15 kV - 38 kV Riser Dimensions

This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

<table>
<thead>
<tr>
<th>DIM</th>
<th>15 kV</th>
<th>25 kV</th>
<th>38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>76"</td>
<td>87"</td>
<td>102"</td>
</tr>
<tr>
<td>B</td>
<td>44"</td>
<td>48"</td>
<td>48"</td>
</tr>
<tr>
<td>C</td>
<td>26"</td>
<td>33"</td>
<td>48"</td>
</tr>
</tbody>
</table>

Nominal Voltage Rating

Description:
LBS, 15 kV - 38 kV RISER, Dimensions

Materials: N/A
Finish: N/A
Scale: NTS

Drawn By: N/A
Date: 12/19/16

Drawing No.: 9185M
Revision: 02
15 kV - 38 kV Vertical Dimensions

This drawing is for illustrative purposes only and therefore, may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

<table>
<thead>
<tr>
<th>DIM</th>
<th>15 kV</th>
<th>25 kV</th>
<th>38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93"</td>
<td>108"</td>
<td>135"</td>
</tr>
<tr>
<td>B</td>
<td>26"</td>
<td>33"</td>
<td>45"</td>
</tr>
<tr>
<td>C</td>
<td>26"</td>
<td>33"</td>
<td>45"</td>
</tr>
</tbody>
</table>

Nominal Voltage Rating

Materials: N/A
Finish: N/A
Scale: NTS
Drawn By: N/A
Date: 12/19/16

Description:
LBS, 15 kV - 38 kV, VERTICAL, (Phase-over-phase) Dimensions

Drawing No.: 9184M
Revision: 01
THE VERTICALLY MOUNTED TAP SWITCH IS A GANG OPERATED POLE MOUNTED SWITCH WHICH CAN BE USED IN VARIOUS CONSTRUCTION APPLICATIONS. RIGHT HAND (SHOWN) AND LEFT HAND OPERATING MODELS ARE ADAPTABLE TO EXTREME HORIZONTAL AND VERTICAL LINE ANGLES. TIN PLATED COPPER BUSS "TEES" AND BOLTED CONDUCTORS CLAMPS ARE AVAILABLE FOR CONNECTING TWO AND THREE-WAY SWITCH CONFIGURATIONS.

This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.
This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

Nominal Voltage Rating

<table>
<thead>
<tr>
<th>DIM</th>
<th>15 kV</th>
<th>25 kV</th>
<th>38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>76"</td>
<td>76"</td>
<td>76"</td>
</tr>
<tr>
<td>B</td>
<td>35"</td>
<td>35"</td>
<td>35"</td>
</tr>
<tr>
<td>C</td>
<td>39.5"</td>
<td>39.5"</td>
<td>39.5"</td>
</tr>
<tr>
<td>D</td>
<td>73"</td>
<td>77"</td>
<td>81"</td>
</tr>
</tbody>
</table>

Materials: N/A
Finish: N/A
Scale: NTS
Drawn By: N/A
Date: 12/19/16

Description: LBS, 15 kV - 38 kV Triangular (Pole Top) Dimensions
Drawing No.: 9227M
Revision: 00
Hook-Stick Operating Mechanism, Crossarm Mounted

Fast, Easy Installation The Inertia hookstick operated switch eliminates the need for a control rod, so there is no need for any field adjustment of the switch. Compression of the blades into the clips and interrupter timing are factory set. Without lower controls; pole clutter is reduced.

Versatile Hookstick operating mechanisms are available on Horizontal, Underarm horizontal, Riser, Vertical (Phase-over-phase) and Delta (triangular) configurations.

Safe Operation The Inertia Hookstick safety features include:
1. Hookstick mechanism is located below the xarm, away from hot parts.
2. No springs that could be affected by ice.
3. The switch bell crank has built-in toggle-over in both the open and closed positions, which in conjunction to the lock-out bar feature, prevents inadvertent operation of the switch from either positions by perching wildlife.
4. For night and inclement weather operation, the “hook” positions are high-lighted with a high visibility, yellow reflective surface.

Easy Operation The Inertia Hookstick bellcrank and rotating stacks have stainless steel-to-brass shaft bearings. Consider the savings in restrictive losses when the control rods, guides and handle are no longer a factor! This makes the inertia hookstick operated switch the easiest switch to operate, High leverage cam action ensures properly closed switch and reduced operating force.

This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.
NOTE: MINIMUM PHASE SPACING SHOWN. ALTERNATE SPACING IS AVAILABLE.

This drawing is for illustrative purposes only and therefore, may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

<table>
<thead>
<tr>
<th>Materials:</th>
<th>N/A</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish:</td>
<td>N/A</td>
<td>25 kV Tiered Outboard, Armless Unitized LineBOSS™ Sidebreak GOAB Switch</td>
</tr>
<tr>
<td>Scale:</td>
<td>NTS</td>
<td></td>
</tr>
<tr>
<td>Drawn By:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td>12/19/16</td>
<td></td>
</tr>
</tbody>
</table>

Drawing No.: 9374M Revision: 00
This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

Materials:	N/A
Finish:	N/A
Scale:	NTS
Drawn By:	N/A
Date:	12/19/16

Description: 15-38 kV, Horizontal Switch, Substation H-Frame Mounted, Torsional Control

Drawing No.: 9661-28M

Revision: 00
This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

Nominal Voltage Rating

<table>
<thead>
<tr>
<th>DIM</th>
<th>15 kV</th>
<th>25 kV</th>
<th>38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30"</td>
<td>36"</td>
<td>48"</td>
</tr>
</tbody>
</table>

MINIMUM PHASE SPACING

NOTE: MINIMUM PHASE SPACING SHOWN. ALTERNATE SPACING IS AVAILABLE.

RECIPROCATING HANDLE CONTROL MECHANISM SHOWN. TORSIONAL "SWING" CONTROLS ARE AVAILABLE.

Description:

15-38 kV, Riser Switch, Substation H-Frame Mounted, Recip. Control

Materials: N/A

Finish: N/A

Scale: NTS

Drawn By: N/A

Date: 12/19/16

Drawing No.: 9661-32M

Revision: 00
This drawing is for illustrative purposes only and therefore; may, or may not reflect the current revision of this drawing. Please request the current revision from the factory upon quote.

MINIMUM PHASE SPACING

<table>
<thead>
<tr>
<th>Nominal Voltage Rating</th>
<th>15 kV</th>
<th>25 kV</th>
<th>38 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM: A</td>
<td>30"</td>
<td>36"</td>
<td>48"</td>
</tr>
</tbody>
</table>

NOTE: MINIMUM PHASE SPACING SHOWN. ALTERNATE SPACING IS AVAILABLE. RECIPROCATING HANDLE CONTROL MECHANISM SHOWN. TORSIONAL "SWING" CONTROLS ARE AVAILABLE.

Description:
15-38 kV, H-Frame, Riser Switch, Substation Mounted, Recip. Control

Materials: N/A

Finish: N/A

Scale: NTS

Drawn By: N/A

Date: 12/19/16

Drawing No.: 9688-13M

Revision: 00